skip to main content


Search for: All records

Creators/Authors contains: "Schumer, Molly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An important problem in evolutionary genomics is to investigate whether a certain trait measured on each sample is associated with the sample phylogenetic tree. The phylogenetic tree represents the shared evolutionary history of the samples and it is usually estimated from molecular sequence data at a locus or from other type of genetic data. We propose a model for trait evolution inspired by the Chinese Restaurant Process that includes a parameter that controls the degree of preferential attachment, that is, the tendency of nodes in the tree to subtend from nodes of the same type. This model with no preferential attachment is equivalent to a structured coalescent model with simultaneous migration and coalescence events and serves as a null model. We derive a test for phylogenetic binary trait association with linear computational complexity and empirically demonstrate that it is more powerful than some other methods. We apply our test to study the phylogenetic association of some traits in swordtail fish, breast cancer, yellow fever virus, and influenza A H1N1 virus. R-package implementation of our methods is available at https://github.com/jyzhang27/CRPTree.

     
    more » « less
  2. Free, publicly-accessible full text available December 27, 2024
  3. Abstract

    Over the past two decades researchers have documented the extent of natural hybridization between closely related species using genomic tools. Many species across the tree of life show evidence of past hybridization with their evolutionary relatives. In some cases, this hybridization is complex—involving gene flow between more than two species. While hybridization is common over evolutionary timescales, some researchers have proposed that it may be even more common in contemporary populations where anthropogenic disturbance has modified a myriad of aspects of the environments in which organisms live and reproduce. Here, we develop a flexible tool for local ancestry inference in hybrids derived from three source populations and describe a complex, recent hybridization event between distantly related swordtail fish lineages (Xiphophorus) and its potential links to anthropogenic disturbance.

     
    more » « less
  4. Abstract

    Social interactions can drive distinct gene expression profiles which may vary by social context. Here we use female sailfin molly fish (Poecilia latipinna) to identify genomic profiles associated with preference behavior in distinct social contexts: male interactions (mate choice) versus female interactions (shoaling partner preference). We measured the behavior of 15 females interacting in a non‐contact environment with either two males or two females for 30 min followed by whole‐brain transcriptomic profiling by RNA sequencing. We profiled females that exhibited high levels of social affiliation and great variation in preference behavior to identify an order of magnitude more differentially expressed genes associated with behavioral variation than by differences in social context. Using a linear model (limma), we took advantage of the individual variation in preference behavior to identify unique gene sets that exhibited distinct correlational patterns of expression with preference behavior in each social context. By combining limma and weighted gene co‐expression network analyses (WGCNA) approaches we identified a refined set of 401 genes robustly associated with mate preference that is independent of shoaling partner preference or general social affiliation. While our refined gene set confirmed neural plasticity pathways involvement in moderating female preference behavior, we also identified a significant proportion of discovered that our preference‐associated genes were enriched for ‘immune system’ gene ontology categories. We hypothesize that the association between mate preference and transcriptomic immune function is driven by the less well‐known role of these genes in neural plasticity which is likely involved in higher‐order learning and processing during mate choice decisions.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that “incompatible” interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations. 
    more » « less
  7. In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization. 
    more » « less
  8. Abstract

    Understanding how organisms adapt to changing environments is a core focus of research in evolutionary biology. One common mechanism is adaptive introgression, which has received increasing attention as a potential route to rapid adaptation in populations struggling in the face of ecological change, particularly global climate change. However, hybridization can also result in deleterious genetic interactions that may limit the benefits of adaptive introgression. Here, we used a combination of genome‐wide quantitative trait locus mapping and differential gene expression analyses between the swordtail fish speciesXiphophorus malincheandX.birchmannito study the consequences of hybridization on thermotolerance. While these two species are adapted to different thermal environments, we document a complicated architecture of thermotolerance in hybrids. We identify a region of the genome that contributes to reduced thermotolerance in individuals heterozygous forX.malincheandX.birchmanniancestry, as well as widespread misexpression in hybrids of genes that respond to thermal stress in the parental species, particularly in the circadian clock pathway. We also show that a previously mapped hybrid incompatibility betweenX.malincheandX.birchmannicontributes to reduced thermotolerance in hybrids. Together, our results highlight the challenges of understanding the impact of hybridization on complex ecological traits and its potential impact on adaptive introgression.

     
    more » « less
  9. Abstract

    A rapidly increasing body of work is revealing that the genomes of distinct species often exhibit hybrid ancestry, presumably due to postspeciation hybridization between closely related species. Despite the growing number of documented cases, we still know relatively little about how genomes evolve and stabilize following hybridization, and to what extent hybridization is functionally relevant. Here, we examine the case ofXiphophorus nezahualcoyotl, a teleost fish whose genome exhibits significant hybrid ancestry. We show that hybridization was relatively ancient and is unlikely to be ongoing. Strikingly, the genome ofX. nezahualcoyotlhas largely stabilized following hybridization, distinguishing it from examples such as human–Neanderthal hybridization. Hybridization‐derived regions are remarkably distinct from other regions of the genome, tending to be enriched in genomic regions with reduced constraint. These results suggest that selection has played a role in removing hybrid ancestry from certain functionally important regions. Combined with findings in other systems, our results raise many questions about the process of genomic stabilization and the role of selection in shaping patterns of hybrid ancestry in the genome.

     
    more » « less